Login

Your Name:(required)

Your Password:(required)

Join Us

Your Name:(required)

Your Email:(required)

Your Message :

0/2000

Your Position: Home - Generators - Induction motors vs. permanent magnet motors

Induction motors vs. permanent magnet motors

Author: Harry

Apr. 29, 2024

Induction motors vs. permanent magnet motors

Induction motors vs. permanent magnet motors

Contact us to discuss your requirements of Permanent Magnet Induction Motor. Our experienced sales team can help you identify the options that best suit your needs.

An induction motor has two basic electrical parts: a rotor and a stator. The stator is the stationary electrical component composed of wire coils that create an electromagnet when energized.

The rotor is the rotating component, also capable of being an electromagnet. The rotor is located inside the stator. When AC current is supplied to the stator, it produces a rotating magnetic field, which then induces a separate magnetic field in the rotor. The induced magnetic field of the rotor is attracted to and follows the rotation of the magnetic field of the stator. Because the field of the rotor is induced, there is always some lag time between the speed of the rotor and the magnetic field speed of the stator. This is referred to as “slip”, with the rotor’s speed always lagging a bit behind the stator’s magnetic field.

In a permanent magnet motor, permanent magnets are on the rotor. When current is supplied to the stator, it does not induce a magnetic field on the rotor; rather, the permanent magnetic field of the rotor is synchronous with that of the stator.

Recommended article:
Why does higher voltage produce better torque from ...

For more information, please visit Working Principle of Pmsm Motor.

Inotherwords,therotorspinsatthesame speed as the stator’s magnetic field.

One of the consequences of the rotor speed matching the magnetic field of the stator, is that there is no energy loss due to “rotor resistance”. In an induction motor, the rotor’s magnetic field resists induction by the stator, to a certain extent. The permanent magnet motor does not suffer this loss of energy, and this largely contributes to the higher efficiency of permanent magnet motor driven variable-speed pumps compared to induction motor driven single speed pumps. Energy efficient single speed pumps might have an induction motor efficiency of 75% while variable-speed pump’s permanent magnet motors are as high as 92% efficient.

Permanent magnet vs induction motor Photo credit: newenergyandfuel.com

Want more information on Types of Synchronous Machines? Feel free to contact us.

106

0

Comments

0/2000

All Comments (0)

Guest Posts

If you are interested in sending in a Guest Blogger Submission,welcome to write for us!

Your Name (required)

Your Email (required)

Subject

Your Message (required)

0/2000